Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Humanos , Adulto , Ratos , Animais , Idoso , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Oxirredução , Hipertrofia/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
2.
J Phys Chem C Nanomater Interfaces ; 128(8): 3438-3448, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38445015

RESUMO

Developing biocompatible nanocoatings is crucial for biomedical applications. Noble metal colloidal nanoparticles with biomolecular shells are thought to combine diverse chemical and optothermal functionalities with biocompatibility. Herein, we present nanoparticles with peptide hydrogel shells that feature an unusual combination of properties: the metal core possesses localized plasmon resonance, whereas a few-nanometer-thick shells open opportunities to employ their soft framework for loading and scaffolding. We demonstrate this concept with gold and silver nanoparticles capped by glutathione peptides stacked into parallel ß-sheets as they aggregate on the surface. A key role in the formation of the ordered structure is played by coinage metal(I) thiolates, i.e., Ag(I), Cu(I), and Au(I). The shell thickness can be controlled via the concentration of either metal ions or peptides. Theoretical modeling of the shell's molecular structure suggests that the thiolates have a similar conformation for all the metals and that the parallel ß-sheet-like structure is a kinetic product of the peptide aggregation. Using third-order nonlinear two-dimensional infrared spectroscopy, we revealed that the ordered secondary structure is similar to the bulk hydrogels of the coinage metal thiolates of glutathione, which also consist of aggregated stacked parallel ß-sheets. We expect that nanoparticles with hydrogel shells will be useful additions to the nanomaterial toolbox. The present method of nanogel coating can be applied to arbitrary surfaces where the initial deposition of the seed glutathione monolayer is possible.

3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473872

RESUMO

The targeting of human thioredoxin reductase is widely recognized to be crucially involved in the anticancer properties of several metallodrugs, including Au(I) complexes. In this study, the mechanism of reaction between a set of five N-heterocyclic carbene Au(I) complexes and models of the active Sec residue in human thioredoxin reductase was investigated by means of density functional theory approaches. The study was specifically addressed to the kinetics and thermodynamics of the tiled process by aiming at elucidating and explaining the differential inhibitory potency in this set of analogous Au(I) bis-carbene complexes. While the calculated free energy profile showed a substantially similar reactivity, we found that the binding of these Au(I) bis-carbene at the active CysSec dyad in the TrxR enzyme could be subjected to steric and orientational restraints, underlining both the approach of the bis-carbene scaffold and the attack of the selenol group at the metal center. A new and detailed mechanistic insight to the anticancer activity of these Au(I) organometallic complexes was thus provided by consolidating the TrxR targeting paradigm.


Assuntos
Antineoplásicos , Complexos de Coordenação , Metano/análogos & derivados , Humanos , Selenocisteína , Tiorredoxina Dissulfeto Redutase/metabolismo , Antineoplásicos/farmacologia , Ouro/química , Complexos de Coordenação/química
4.
J Mol Model ; 30(1): 4, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082186

RESUMO

CONTEXT: Rh(III) complexes demonstrated to exert promising pharmacological effects with potential applications as anti-cancer, anti-bacterial, and antimicrobial agents. One important Rh(III)-ligand is the pentamethylcyclopentadienyl (Cp*) group forming in water the [Cp*Rh(H2O)3]2+ complex. Among of its attractive chemical properties is the ability to react specifically with Tyr amino acid side chain of G-protein-coupled receptor (GPCR) peptides by means of highly chemoselective bioconjugation reaction, at room temperature and at pH 5-6. In this computational work, in order to deepen the mechanism of this chemoselective conjugation, we study the ligand exchange reaction between [Cp*Rh(H2O)3]2+ and three small molecules, namely p-cresol, 3-methylimidazole, and toluene, selected as mimetic of aromatic side chains of tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe), respectively. Our outcomes suggest that the high selectivity for Tyr side chain might be related to OH group able to affect both thermodynamic and kinetic of ligand exchange reaction, due to its ability to act as both H bond acceptor and donor. These mechanistic aspects can be used to design new metal drugs containing the [Cp*Rh]2+ scaffold targeting specifically Tyr residues involved in biological/pathological processes such as phosphorylation by means of Tyr-kinase enzyme and protein-protein interactions. METHODS: The geometry of three encounter complexes and product adducts were optimized at the B3LYP//CPCM/ωB97X-D level of theory, adopting the 6-311+G(d,p) basis set for all non-metal atoms and the LANL2DZ pseudopotential for the Rh atom. Meta-dynamics RMSD (MTD(RMSD)) calculations at GFN2-xTB level of theory were performed in NVT conditions at 298.15 K to investigate the bioconjugation reactions (simulation time: 100 ps; integration step 2.0; implicit solvent model: GBSA). The MTD(RMSD) simulation was performed in two replicates for each encounter complex. Final representative subsets of 100 structures for each run were gained with a sampling rate of 1 ps and analyzed by performing single point calculations using the FMO3 method at RI-MP2/6-311G//PCM[1] level of theory, adopting the MCP-TZP core potential for Rh atom.


Assuntos
Aminoácidos Aromáticos , Peptídeos , Ligantes , Peptídeos/química , Aminoácidos , Tirosina/química
5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834074

RESUMO

Estimating the time since death (post mortem interval, PMI) represents one of the most important tasks in daily forensic casework. For decades, forensic scientists have investigated changes in post mortem body composition, focusing on different physical, chemical, or biological aspects, to discover a reliable method for estimating PMI; nevertheless, all of these attempts remain unsuccessful considering the currently available methodical spectrum characterized by great inaccuracies and limitations. However, recent promising approaches focus on the post mortem decomposition of biomolecules. In particular, significant advances have been made in research on the post mortem degradation of proteins. In the present study, we investigated early post mortem changes (during the first 24 h) in the proteome profile of the pig skeletal muscle looking for new PMI specific biomarkers. By mass spectrometry (MS)-based proteomics, we were able to identify a total of nine potential PMI biomarkers, whose quantity changed constantly and progressively over time, directly or inversely proportional to the advancement of post mortem hours. Our preliminary study underlines the importance of the proteomic approach in the search for a reliable method for PMI determination and highlights the need to characterize a large number of reliable marker proteins useful in forensic practice for PMI estimation.


Assuntos
Mudanças Depois da Morte , Proteômica , Animais , Suínos , Patologia Legal/métodos , Autopsia , Biomarcadores/metabolismo
6.
Antioxidants (Basel) ; 12(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760081

RESUMO

Caloric restriction is an effective intervention to protract healthspan and lifespan in several animal models from yeast to primates, including humans. Caloric restriction has been found to induce cardiometabolic adaptations associated with improved health and to delay the onset and progression of kidney disease in different species, particularly in rodent models. In both aging and obesity, fibrosis is a hallmark of kidney disease, and epithelial-mesenchymal transition is a key process that leads to fibrosis and renal dysfunction during aging. In this study, we used an aged and obese rat model to evaluate the effect of long-term (6 months) caloric restriction (-40%) on renal damage both from a structural and functional point of view. Renal interstitial fibrosis was analyzed by histological techniques, whereas effects on mesenchymal (N-cadherin, Vimentin, Desmin and α-SMA), antioxidant (SOD1, SOD2, Catalase and GSTP1) inflammatory (YM1 and iNOS) markers and apoptotic/cell cycle (BAX, BCL2, pJNK, Caspase 3 and p27) pathways were investigated using Western blot analysis. Our results clearly showed that caloric restriction promotes cell cycle division and reduces apoptotic injury and fibrosis phenotype through inflammation attenuation and leukocyte infiltration. In conclusion, we highlight the beneficial effects of caloric restriction to preserve elderly kidney function.

7.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37342994

RESUMO

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Assuntos
Antineoplásicos , Auranofina , Auranofina/farmacologia , Auranofina/química , Ligantes , Ouro/química , Antineoplásicos/farmacologia , Espectroscopia de Ressonância Magnética
8.
Pharmaceutics ; 15(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986846

RESUMO

Recently, the well-characterized metallodrug auranofin has been demonstrated to restore the penicillin and cephalosporin sensitivity in resistant bacterial strains via the inhibition of the NDM-1 beta-lactamase, which is operated via the Zn/Au substitution in its bimetallic core. The resulting unusual tetrahedral coordination of the two ions was investigated via the density functional theory calculations. By assessing several charge and multiplicity schemes, coupled with on/off constraining the positions of the coordinating residues, it was demonstrated that the experimental X-ray structure of the gold-bound NDM-1 is consistent with either Au(I)-Au(I) or Au(II)-Au(II) bimetallic moieties. The presented results suggest that the most probable mechanism for the auranofin-based Zn/Au exchange in NDM-1 includes the early formation of the Au(I)-Au(I) system, superseded by oxidation yielding the Au(II)-Au(II) species bearing the highest resemblance to the X-ray structure.

9.
Chemistry ; 29(16): e202202937, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36477932

RESUMO

Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.


Assuntos
Metais , Proteínas , Proteínas/química , Metais/química
10.
J Comput Aided Mol Des ; 36(12): 851-866, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36318393

RESUMO

In this work, the ab initio fragment molecular orbital (FMO) method was applied to calculate and analyze the binding energy of two biscarbene-Au(I) derivatives, [Au(9-methylcaffein-8-ylidene)2]+ and [Au(1,3-dimethylbenzimidazol-2-ylidene)2]+, to the DNA G-Quadruplex structure. The FMO2 binding energy considers the ligand-receptor complex as well as the isolated forms of energy-minimum state of ligand and receptor, providing a better description of ligand-receptor affinity compared with simple pair interaction energies (PIE). Our results highlight important features of the binding process of biscarbene-Au(I) derivatives to DNA G-Quadruplex, indicating that the total deformation-polarization energy and desolvation penalty of the ligands are the main terms destabilizing the binding. The pair interaction energy decomposition analysis (PIEDA) between ligand and nucleobases suggest that the main interaction terms are electrostatic and charge-transfer energies supporting the hypothesis that Au(I) ion can be involved in π-cation interactions further stabilizing the ligand-receptor complex. Moreover, the presence of polar groups on the carbene ring, as C = O, can improve the charge-transfer interaction with K+ ion. These findings can be employed to design new powerful biscarbene-Au(I) DNA-G quadruplex binders as promising anticancer drugs. The procedure described in this work can be applied to investigate any ligand-receptor system and is particularly useful when the binding process is strongly characterized by polarization, charge-transfer and dispersion interactions, properly evaluated by ab initio methods.


Assuntos
Antineoplásicos , Quadruplex G , Ligantes , Ouro , Antineoplásicos/química , DNA
11.
Inorg Chem ; 61(41): 16421-16429, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36194651

RESUMO

Recently, dirhodium and diruthenium paddlewheel complexes have drawn attention as perspective anticancer drugs. In this study, the kinetics of reaction of typical paddlewheel scaffolds Rh2(µ-O2CCH3)4(H2O)2, Ru2(µ-O2CCH3)4(H2O)Cl, and [Ru2(µ-O2CCH3)4(HO)Cl]- with protein nucleophiles were investigated by means of the density functional theory. The substitution of axial ligands─water and chloride─by the models of protein residue side chains was analyzed, revealing the binding selectivity displayed by these paddlewheel metal scaffolds. The substitution of water is under a thermodynamic control, in which, although the Arg, Cys-, and Sec- residues are the most favorable, their binding is expected to be scarcely selective in a biological context. On the other hand, the replacement of the axial water with a more stable hydroxo ligand induces the chloride substitution in diRu complexes, which also targets Arg, Cys-, and Sec-, although with a moderately higher activation barrier for any examined protein residue. Additionally, the carried out characterization of the geometrical parameters of the transition states permitted determination of the impact of an increased steric hindrance of diRh and diRu complexes on their protein site selectivity. This study corroborates the idea of the substitution of the acetate ligands with biologically active, but more hindering, carboxylate ligands, in order to yield dual acting metallodrugs. This study allows us to assume that the delivery of diRu paddlewheel complexes in their monoanionic form [Ru2(µ-O2CR)4(OH)Cl]- decorated by the bulky substituents R may constitute an approach to augment the selectivity toward anticancer targets, such as TrxR in tumor cells, although under the condition that such a selectivity is operative only in high pH conditions.


Assuntos
Antineoplásicos , Cloretos , Antineoplásicos/química , Antineoplásicos/farmacologia , Cinética , Ligantes , Água
12.
Inorg Chem ; 61(39): 15664-15677, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36125417

RESUMO

The identification of novel therapeutics against the pandemic SARS-CoV-2 infection is an indispensable new address of current scientific research. In the search for anti-SARS-CoV-2 agents as alternatives to the vaccine or immune therapeutics whose efficacy naturally degrades with the occurrence of new variants, the salts of Bi3+ have been found to decrease the activity of the Zn2+-dependent non-structural protein 13 (nsp13) helicase, a key component of the SARS-CoV-2 molecular tool kit. Here, we present a multilevel computational investigation based on the articulation of DFT calculations, classical MD simulations, and MIF analyses, focused on the examination of the effects of Bi3+/Zn2+ exchange on the structure and molecular interaction features of the nsp13 protein. Our calculations confirmed that Bi3+ ions can replace Zn2+ in the zinc-finger metal centers and cause slight but appreciable structural modifications in the zinc-binding domain of nsp13. Nevertheless, by employing an in-house-developed ATOMIF tool, we evidenced that such a Bi3+/Zn2+ exchange may decrease the extension of a specific hydrophobic portion of nsp13, responsible for the interaction with the nsp12 protein. The present study provides for a detailed, atomistic insight into the potential anti-SARS-CoV-2 activity of Bi3+ and, more generally, evidences the hampering of the nsp13-nsp12 interaction as a plausible therapeutic strategy.


Assuntos
COVID-19 , SARS-CoV-2 , Bismuto , Humanos , Íons , RNA Helicases/química , RNA Helicases/metabolismo , Sais , Zinco
13.
J Mol Model ; 28(8): 241, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918494

RESUMO

The molecular interaction properties and aggregation capabilities disclosed by PrP-E200K, a pathogenic mutant of the human prion protein, were investigated in detail using multilayered computational approaches. In a previous work, we reported that the electrostatic complementarity between region1 (negative) and region3 (positive) has been assumed to lead to a head-to tail interaction between 120 and 231 PrP-E200K units and to initiation of the aggregation process. In this work, we extended the PrP-E200K structure by including the unstructured 90-120 segment which was found to assume different conformations. Plausible models of 90-231 PrP-E200K dimers were calculated and analyzed in depth to identify the nature of the involved protein-protein interactions. The unstructured 90-120 segment was found to extend the positively charged region3 involved in the association of PrP-E200K units which resulted to be driven by hydrophobic interactions. The combination of molecular dynamics, protein-protein docking, grid-based mapping, and fragment molecular orbital approaches allowed us to provide a plausible mechanism of the early state of 90-231 PrP-E200K aggregation, considered a preliminary step of amyloid conversion.


Assuntos
Príons , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Príons/química , Príons/metabolismo , Eletricidade Estática
14.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886853

RESUMO

Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3-, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens' group we observed a higher tendency to react, attributable to the ligands' effect. The chemical and mechanistic implications of these meaningful differences are discussed.


Assuntos
Pró-Fármacos , Adjuvantes Imunológicos/uso terapêutico , Etilenos , Ligantes , Pró-Fármacos/farmacologia , Telúrio
15.
Molecules ; 27(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458776

RESUMO

Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.


Assuntos
Auranofina , Infecções Estafilocócicas , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Auranofina/química , Auranofina/farmacologia , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
16.
Inorg Chem ; 61(7): 3240-3248, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137586

RESUMO

Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a promising pharmacological profile that features the simultaneous presence of a cisplatin-like center and an arsenite center. We investigated its interactions with proteins through a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin (Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry (ESI MS) measurements. In accordance with previous observations, ESI MS experiments revealed that the obtained metallodrug-protein adducts originated from the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys-, and Sec- side chain models unveils that only neutral histidine and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.


Assuntos
Trióxido de Arsênio/análogos & derivados , Cisplatino/análogos & derivados
17.
Inorg Chem ; 61(1): 746-754, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894670

RESUMO

The structure and the reactivity of four half-sandwich metal complexes of RuII, OsII, RhIII, and IrIII were investigated by means of density functional theory approaches. These piano-stool complexes, grouped in cym-bound complexes, RuII(cym)(dmb)Cl2, 1, and OsII(cym)(dmb)Cl2, 2, and Cp*-bound complexes, RhIII(Cp*)(dmb)Cl2, 3, and IrIII(Cp*)(dmb)Cl2, 4, with cym = η6-p-cymene, Cp* = η5-pentamethylcyclopentadienyl, and dmb = 1,3-dimethylbenzimidazol-2-ylidene, were recently proposed as anticancer metallodrugs that preferably target Cys- or Sec-containing proteins. Thus, density functional theory calculations were performed here to characterize in detail the thermodynamics and the kinetics underlining the targeting of these metallodrugs at either neutral or anionic Cys and Sec side chains. Calculations evidenced that all these complexes preferably target at Cys or Sec via chloro exchange, although cym-bound and Cp*-bound complexes resulted to be more prone to bind at neutral or anionic forms, respectively, of these soft protein sites. Further decomposition analyses of the activation free energies for the reaction between 1-4 complexes and either Cys or Sec, paralleled with the comparison among the optimized transition-state structures, allowed us to spotlight the significant role played by solvation in determining the overall reactivity and selectivity expected for these prototypical metallodrugs.

18.
Front Mol Biosci ; 8: 794946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957222

RESUMO

Antarctica represents a unique natural laboratory for ecotoxicological studies as it is characterized by low internal pollutants emissions but high external contamination levels. Indeed, warm temperatures promote pollutant evaporation (low latitudes), while cool temperatures (high latitudes) promote its deposition from the atmosphere on land/water. Metals are the most important pollutants in ecosystems and represent a serious and global threat to aquatic and terrestrial organisms. Since 2000, the risks posed by metals have led many States to ratify protocols aimed at reducing their emissions. Endemic Antarctic organisms represent excellent bioindicators in order to evaluate the efficacy of global measures adopted to mitigate pollutants release into the environment. In this study (supported by PNRA18-00133), we estimated the metals contamination levels and the metallothionein-1 expression in liver samples of two Antarctic fish species, the icefish Chionodraco hamatus and the red-blooded Trematomus bernacchii, collected in the same area during 2002 and 2014. The chosen area is located in the Ross Sea, a unique area as it is also isolated from the rest of the Southern Ocean. The analysis of contamination trends throughout this period showed, in both species, a significant increase over time of metals bioaccumulation and metallothionein-1 expression. In addition, our result clearly indicated that the detoxifying ability of the two organisms analyzed greatly differs, probably due to haemoglobin presence/absence. Our work represents an important early step to obtain valuable information in conservation strategies for both Antarctic and non-Antarctic ecosystems.

19.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944502

RESUMO

Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antimônio/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Cloretos/farmacologia , Indazóis/farmacologia , Compostos Organoáuricos/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Rutênio/farmacologia , SARS-CoV-2/efeitos dos fármacos , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Animais , Antimônio/química , Antivirais/química , Linhagem Celular , Cloretos/química , Chlorocebus aethiops , Descoberta de Drogas , Humanos , Indazóis/química , Compostos Organoáuricos/química , Compostos Organometálicos/química , Compostos de Rutênio/química , Células Vero
20.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946684

RESUMO

Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ouro , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias , Selenoproteínas/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Complexos de Coordenação/uso terapêutico , Ouro/química , Ouro/farmacocinética , Ouro/uso terapêutico , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Selenoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...